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Modelling beyond Markov processes

Recent trend for using processes with memory in finance and beyond:

▶ Rough volatility: Model stochastic volatility by fractional Brownian motion, e.g., the
rough Bergomi model:

dS t =
√

vtS tdZt,

vt = ξ(t) exp
(
ηŴt −

1
2
η2t2H

)
, Ŵt B

∫ t

0
K(t − s)dWs, K(r) B

√
2HrH− 1

2 .

▶ Order flow models by self-exciting jump processes, e.g., Hawkes processes.

▶ Statistical mechanics models based on Generalized Langevin Equations.

Many numerical methods rely on the Markov property: (pricing) PDEs, polynomial
regression methods, dynamic programming, . . . .
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Least squares Monte Carlo for Markov processes

Value function

v(t, x) B sup
τ∈S, τ≥t

E [Yτ∧T | Xt = x]

▶ Xt ∈ R
d denotes an underlying Markov (asset price + additional factors) process, d ≥ 1

▶ Yt denotes the (discounted) cash-flow process, e.g., Yt = g(Xt).
▶ E w.r.t. a pricing measure P, S the set of (Ft)-stopping times, (Ft) generated by X.

Dynamic programming principle

v(t, x) ≈ max
(
E[v(t + ∆, Xt+∆) | Xt = x], g(x)

)
▶ Approximate E[v(t + ∆, Xt+∆) | Xt = x] by regression based on family of basis functions

A, e.g., A = Poldeg≤n(Rd), 1
M

∑M
i=1

(
v
(
t + ∆, X(i)

t+∆
)
−

∑
ϕ∈A cϕϕ

(
X(i)

t
))2 cϕ
−−→ min!

▶ Curse of dimensionality of the functional approximation problem.
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Dual martingale approach [Rogers ’02, Haugh and Kogan ’04]

sup
τ∈S

E [Yτ∧T ] = inf
M∈M0

E

 sup
t∈[0,T ]

(Yt − Mt)


▶ M0 denotes martingales M with M0 = 0, and E
[
∥M∥∞

]
< ∞.

▶ An optimizer M∗ is given by the martingale of the Doob–Meyer decomposition of the
Snell envelop Vt B ess supτ∈St

E [Yτ∧T | Ft].

▶ If, for simplicity, X is a diffusion process driven by a Brownian motion W, then
Vt = v(t, Xt), and the Doob-Meyer decomposition reads

M∗t =
∫ t

0
∂xv(s, Xs)σ(Xs) dWs. dXt = µ(Xt) dt + σ(Xt) dWt.

This motivates the ansatz Mt =
∫ t

0 fθ(s, Xs) dWs, for fθ in some suitable parametric
function space, θ ∈ Θ.
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Non-Markovian extensions by the signature

The signature X̂<∞0,t , i.e., the collection of all iterated integrals, determines the path X|[0,t].

Hence, the process t 7→ X̂<∞0,t is a Markov process, even when X is not.

Dynamic programming

▶ Markovian ansatz:

E[Vt+∆t | Ft] = fθ(t, Xt)

▶ Non-Markovian ansatz:

E[Vt+∆t | Ft] = f (t, X|[0,t]) = fθ
(
X̂≤N

0,t

)

Dual martingale approach

▶ Markovian ansatz:

Mt =

∫ t

0
fθ(s, Xs) dWs

▶ Non-Markovian ansatz:

Mt =

∫ t

0
f
(
s, X|[0,s]

)
dWs =

∫ t

0
fθ

(
X̂≤N

0,s

)
dWs
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Controlled differential equations – iterated integrals as polynomials on path space

Controlled differential equation

Let x : [0,T ]→ Rd be a smooth path, V : Re → Re×d smooth, y0 ∈ R
e, and consider

dy(t) = V(y(t)) dx(t), t ∈ [0,T ], y(0) = y0.

▶ y solves an ODE: ẏ(t) = V(y(t))ẋ(t), but difficult to generalize to rough paths.
▶ First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(u)) = V(y(s))+H.O.T., and hence y(t) = y(s) + V(y(s))xs,t + H.O.T., xs,t B x(t) − x(s).

▶ Second order expansion: y(u) = y(s) + V(y(s))xs,u + H.O.T., implying that

V(y(u)) = V(y(s)) + DV(y(s))V(y(s))xs,u, y(t) = y(s) + V(y(s))xs,t + DV(y(s))V(y(s))xs,t + H.O.T.

x
ij
s,t B

∫ t

s
xi

s,udx j(u) =
∫

s<t1<t2<t
dxi(t1) dx j(t2), i, j = 1, . . . , d.

▶ Third order expansion: involves iterated integrals of order three...
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▶ y solves an ODE: ẏ(t) = V(y(t))ẋ(t), but difficult to generalize to rough paths.
▶ First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(u)) = V(y(s))+H.O.T., and hence y(t) = y(s) + V(y(s))xs,t + H.O.T., xs,t B x(t) − x(s).

▶ Second order expansion: y(u) = y(s) + V(y(s))xs,u + H.O.T., implying that

V(y(u)) = V(y(s)) + DV(y(s))V(y(s))xs,u, y(t) = y(s) + V(y(s))xs,t + DV(y(s))V(y(s))xs,t + H.O.T.

x
ij
s,t B

∫ t

s
xi

s,udx j(u) =
∫

s<t1<t2<t
dxi(t1) dx j(t2), i, j = 1, . . . , d.

▶ Third order expansion: involves iterated integrals of order three...

Primal and dual optimal stopping with signatures · April 2nd, 2024 · Page 8 (31)



Controlled differential equations – iterated integrals as polynomials on path space

Controlled differential equation

Let x : [0,T ]→ Rd be a smooth path, V : Re → Re×d smooth, y0 ∈ R
e, and consider

dy(t) = V(y(t)) dx(t), t ∈ [0,T ], y(0) = y0.
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Path signature: structure

▶ Given a (possibly random, but for now smooth) path X : [0,T ]→ Rd.

▶ W.l.o.g., X(0) = 0. Denote X̂(t) B (t, X(t)), X0(t) B t.

Signature

The signature is the collection of all iterated integrals,

X̂i1···ins,t B

∫
s<t1<···<tn<t

dX̂i1t1 · · · dX̂intn , i1, . . . , in ∈ { 0, . . . , d } .

▶ Natural structure: Associate X̂i1···ins,t with the multi-index i1 · · · in.
Operations on multi-indices: addition, scalar multiplication, concatenation product.

▶ Motivation: Natural relations between iterated integrals, e.g. X̂ijs,t + X̂
ji
s,t = X̂

i
s,tX̂
j
s,t.

▶ Obtain formal power series in 1 + d non-commutating variables 0, . . . , d.
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Path signatures: notation

▶ The concatenation product on span { 0, . . . , d } is equivalent to the tensor product ⊗ on
(R1+d)⊗k.

▶ The signature is formally defined as an element of the (extended) tensor algebra
T ((R1+d)) (with product ⊗), i.e.,

X̂<∞s,t B
∞∑

n=0

∑
i1,...,in∈{ 0,...,d }

X̂i1···ins,t ei1 ⊗ · · · ⊗ ein ∈ T ((R1+d)) B
∞∏

n=0

(R1+d)⊗n.

X̂≤N
s,t ∈ T N(R1+d) denotes the truncation to level N, the projection to level equal to n is

denoted by πn : T N(R1+d)→ (R1+d)⊗n.

▶ LetW1+d denote the linear span of words w in the letters { 0, 1, . . . , d }. Bracket defined
for w = i1 · · · ik, a =

∑∞
n=0

∑
i1,...,in∈{ 0,1,...,d } a

i1···inei1 ⊗ · · · ⊗ ein ∈ T ((Rd)) by ⟨w, a⟩ B aw.

Primal and dual optimal stopping with signatures · April 2nd, 2024 · Page 10 (31)



Path signatures: properties

Chen’s rule

X̂<∞s,u ⊗ X̂
<∞
u,t = X̂

<∞
s,t , 0 ≤ s ≤ u ≤ t ≤ T.

▶ Shuffle product onWd: For words w, v and letters i, j defined by

w� ∅ B ∅� w B w, wi� vj B (w� vj)i + (wi� vj)j.

▶ Example: 12� 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412.

Shuffle identity

∀ℓ1, ℓ2 ∈ W1+d :
〈
ℓ1, X̂

<∞
s,t

〉 〈
ℓ2, X̂

<∞
s,t

〉
=

〈
ℓ1 � ℓ2, X̂

<∞
s,t

〉
.

Path encoding

X̂<∞0,T determines the path X|[0,T ]. Note: this holds due to time extension X̂.
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Rough paths

▶ For X̂ : ∆T → T N(R1+d), ∆T B { (s, t) | 0 ≤ s ≤ t ≤ T }, let

∥∥∥∥X̂∥∥∥∥
α
B max

n=1,...,N

 sup
0≤s<t≤T

∣∣∣∣πn(X̂s,t)
∣∣∣∣

|t − s|nα


1/n

.

Rough paths

Given α ∈]0, 1[, the set of (geometric) α-Hölder rough paths is the closure of{
X̂≤⌊1/α⌋·,·

∣∣∣∣ X smooth
}

under ∥·∥α. It is denoted by Ĉ α
g ([0,T ];R1+d).

▶ Given a rough path X̂, we can construct X̂<∞ in a unique, pathwise, continuous way.
▶ Example: Let W be a Brownian motion, setW(ω) : ∆T → T 2(Rd) by

W i
s,t B W i

t −W i
s, W i, j

s,t B

∫ t

s
(W i

u −W i
s) ◦ dW j

u, 1 ≤ i, j ≤ d.

This a.s. defines a rough path for 1/3 < α < 1/2, i.e.,W ∈ C α
g a.s.
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Key observations

Continuous functionals f : Ĉ α
g ([0,T ])→ R can be approximated by linear functionals

X̂ 7→
〈
ℓ, X̂<∞0,T

〉
, ℓ ∈ W1+d.

▶ This is a consequence of Stone–Weierstrass and the shuffle identity (and holds on
compact subsets of Ĉ α

g ([0,T ];R1+d)).

For every rough stochastic process X̂, the process t 7→ X̂<∞0,t is a Markov process.

▶ Every rough path X with one strictly monotone component is uniquely determined by
its signature.

▶ Assuming that X0 is deterministic and, hence, F0 is trivial, the above result follows.
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Motivation: Optimal stopping of fractional Brownian motion

[Becker, Cheredito, Jentzen ’19] consider the problem sup
0≤τ≤1

E
[
WH
τ

]
,

where WH is fractional Brownian motion with Hurst index H – connection to rough
stochastic volatility models.

▶ Fix a time-grid 0 = t0 < t1 < · · · < tJ = 1, and define a Markov process X j ∈ R
J by

X0 = (0, 0, . . . , 0)

X1 = (WH
t1 , 0, . . . , 0)

X2 = (WH
t1 ,W

H
t2 , 0, . . . , 0)

...

▶ Use deep neural networks to parameterize stopping decisions f j(X j) ≈ DNN j(X j; θ) –
“stop at time j unless stopped earlier”.
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Motivation: Optimal stopping of fractional Brownian motion

Figure: Plot from [Becker,
Cheridito, Jentzen ’19].
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Setting

On a probability space (Ω,F ,P) we are given:
▶ A stochastic process (Xt)t∈[0,T ] such that X̂t B (t, Xt) extends to an α-Hölder rough path
X̂, X0 ≡ 0. Alternatively, we consider a random variable taking values in
Ĉ α

g ([0,T ];R1+d).
▶ A continuous reward-process (Yt)t∈[0,T ] adapted to the filtration (Ft)t∈[0,T ] generated by
X̂ such that E

[
∥Y∥∞;[0,T ]

]
< ∞.

Optimal stopping problem

Let S be the set of (Ft)t∈[0,T ]-stopping times taking values in [0,T ]. Solve

sup
τ∈S

EYτ.

▶ Could also consider more general stochastic optimal control problems.
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The space of stopped rough paths [Kalsi, Lyons, Perez Arribas ’20], [Dupire ’09]

Definition (Space of stopped rough paths)

For α ∈]0, 1[, T > 0, define ΛαT B
⊔

t∈[0,T ]

Ĉ α
g ([0,T ];R1+d) equipped with the final topology of

ϕ : [0,T ] × Ĉ α
g ([0,T ];R1+d)→ ΛαT , ϕ(t, x̂) = x̂|[0,t].

▶ ΛαT is a Polish space with metric d(x̂|[0,t], ŷ|[0,s]) B
∥∥∥x̂ − ỹ∥∥∥

α;[0,t] + |t − s| for s ≤ t, where
ỹ is a piecewise constant extension (up to the 0-component) of ŷ|[0,s] to [0, t].

Lemma
For any progressively measurable process Z, there is a measurable function
f : (ΛαT ,B(ΛαT ))→ R s.t. ∀t ∈ [0,T ] : Zt = f (X̂|[0,t]) a.s.
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Signature method for stochastic control

Following [Kalsi, Lyons, Perez Arribas ’20], a method of solving stochastic optimal control
problems using signatures can be described as follows:

1. Controls ut are continuous functions of the path ϕ(X̂|[0,t]) and, hence, of the signature
θ(X̂<∞0,t ) – and similarly for the loss function.

2. We may approximate θ(X̂<∞0,T ) by linear functionals
〈
ℓ, X̂<∞0,T

〉
.

3. Interchange expectation and truncate the signature at level N.

4. Optimize ℓ 7→
〈
ℓ, E

[
X̂≤N

0,T

]〉
.

Pathwise density for steps 1. + 2. with high probability is proved in [Kalsi, Lyons, Perez
Arribas ’20] for a data-driven optimal execution problem.
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A key lemma

Given a tensor normalization λ (in the sense of [Chevyrev–Oberhauser ’22]), consider

Lλsig(ΛαT ) B
{
ΛαT ∋ X̂|[0,t] 7→

〈
ℓ, λ(X̂<∞0,t )

〉 ∣∣∣∣ ℓ ∈ W1+d

}
⊂ Cb

(
ΛαT ;R

)
.

Lemma

Let µ be a finite measure on ΛαT such that there is β > α with µ
(
ΛαT \ Λ

β
T

)
= 0. Then for

every f ∈ Lp(ΛαT , µ), 1 ≤ p < ∞, there is fn ∈ Lλsig(ΛαT ) s.t.

∥ f − fn∥Lp(ΛαT ;µ) −−−−→n→∞
0.

▶ Similar approach by [Cuchiero, Schmocker, Teichmann ’23] using weighted spaces.
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Density of signature-processes in rough processes

▶ Let ν be a probability measure on Ĉ α
g ([0,T ];R1+d) s.t. there is β > α with ν being

supported on Ĉ β
g ([0,T ];R1+d) ⊂ Ĉ α

g ([0,T ];R1+d).

▶ Example: the Wiener measure with α < 1/2 and any α < β < 1/2.

▶ Take µ to be the push-forward of dt ⊗ ν under
ϕ : [0,T ] × Ĉ α

g ([0,T ];R1+d) ∋ (t, x̂) 7→ x̂|[0,t] ∈ Λ
α
T .

▶ Then, for p = 2, there are ℓn ∈ W1+d s.t.∫ T

0
E

[(
f (X̂|[0,t]) −

〈
ℓn, λ(X̂<∞0,t )

〉)2
]

dt → 0.

Primal and dual optimal stopping with signatures · April 2nd, 2024 · Page 20 (31)



The Longstaff–Schwartz algorithm

Consider the discrete time optimal stopping problem (Bermudan option): Given
T B { 0 = t0 < · · · < tK = T }, let

VT0 B sup
τ∈ST0

E [Yτ], VTtk B ess sup
τ∈STk

E
[
Yτ | Ftk

]
,

where STk denotes the set of (Ft)t∈T -stopping times taking values in { tk, . . . , tK }.

Longstaff–Schwartz algorithm (2001), general version

An optimal stopping time is given by τ∗0, where τ∗k is recursively defined by τ∗K B T and

τ∗k B tk1{
Ytk≥E[Yτ∗k+1

|Ftk ]
} + τ∗k+11

{
Ytk<E[Yτ∗k+1

|Ftk ]
}.

Optimality follows from dynamic programming VTtk = max
(
Ytk , E[VTtk+1

| Ftk ]
)

together with
the fact that min { tm ∈ { tk, . . . , tK } : VTtm = Ytm } is optimal.
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The Longstaff–Schwartz algorithm with signatures

Let τ̃k = τ̃
N,∆t,M
k denote a sequence of stopping times starting at τ̃K = T and

τ̃k B tk1{Ytk≥ψ
N,∆t,M
k (X̂|[0,tk ])}

+ τ̃k+11{Ytk<ψ
N,∆t,M
k (X̂|[0,tk ])}

, k ≥ 1, where

ψN,∆t,M
k (X̂|[0,tk]) =

〈
ℓN,∆t,M

k , λ(X̃≤N
0,tk

)
〉

with X̃≤N
0,tk

denoting an approximation of the truncated
signature based on a grid with mesh size ∆t, and

ℓN,∆t,M
k B arg min

ℓ∈W≤N
1+d

1
M

M∑
m=1

(
Y (m)
τ̃k+1
−

〈
ℓ, λ(X̃≤N,(m)

0,tk
)
〉)2

.
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The Longstaff–Schwartz algorithm with signatures
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−
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Convergence

Theorem

Assuming E
[
∥Y∥∞;T

]
< ∞, and a technical support condition, we have that

ṼT0 B max

Y0,
1
M

M∑
m=1

Y (m)
τ̃1

 M,N→∞
−−−−−−→
∆t→0

VT0 a.s.

▶ Using independent samples for ṼT0 gives a low-biased estimator, i.e., E
[
ṼT0

]
≤ VT0 .

▶ The optimal stopping problem is formulated in terms of the filtration (Ftk )
K
k=0 – up to

discretization with mesh ∆t – not with respect to the filtration generated by (Xtk )
K
k=0.

▶ The recursive step to k = 0 is reformulated here, to avoid a singular regression.
▶ Normalization does not seem to matter in practice.
▶ Replacing the linear regression by a non-linear one possible.
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Dual martingale minimization with signatures

V0 = inf
M∈M2

0

E

 sup
t∈[0,T ]

(Yt − Mt)


Theorem
Assume that (Ft)t∈[0,T ] is generated by an e-dimensional Brownian motion W. Then for any
M ∈ M2

0 there is a sequence f 1
n , . . . , f e

n ∈ Lλsig(ΛT ) s.t.

∫ ·

0
fn(X̂|[0,t])⊤dWt B

e∑
i=1

∫ ·

0
f i
n(X̂|[0,t]) dW i

t
n→∞
−−−−→

L2
M.

Consequently,

V0 = inf
ℓ1,...,ℓe∈W1+d

E

 sup
t∈[0,T ]

Yt −

e∑
i=1

∫ t

0

〈
ℓi, X̂<∞0,s

〉
dW i

s

 .
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Discretization

▶ Finite number of exercise dates T = { t0, . . . , tK } (Bermudan option)

▶ Signature X̃≤N
0,t and stochastic integrals

∫ t
0

〈
ℓi, X̃<∞0,⌊s⌋

〉
dW i

s computed with mesh size ∆t.

▶ Truncation of the signature at level N

▶ Finite sample size M

Theorem

V
T

0
K,N→∞
−−−−−−→
∆t→0

VT0 a.s., V
T

0 B inf
ℓ1,...,ℓe∈W≤N

1+d

1
M

M∑
m=1

max
0≤k≤K

Ytk −

e∑
i=1

∫ tk

0

〈
ℓi, X̃<∞0,⌊s⌋

〉
dW i

s



▶ The minimization problem in V
T

0 is convex, and, in fact, can be formulated as a linear
program in dimension M + dimW≤N

1+d.
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Optimal stopping of fractional Brownian motion: Longstaff–Schwartz & dual martingale methods
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Figure: Approximation
based on J = 500 time
steps, K = 100 exercise
dates, signature
truncation at level
N = 6. Comparison of
the Longstaff–Schwartz
and dual martingale
methods with results of
[Becker-Cheredito-
Jentzen ’19] based on
J = 100.
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Optimal stopping of fractional Brownian motion: non-linear parameterization of stopping times
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Figure: Approximation
based on non-linear
parameterization of
stopping times in terms
of neural networks in the
signature, [B., Hager,
Riedel, Schoenmakers
’23]. Discretization J
time steps, log-signature
truncated at N = 3
(dim g≤N = 5), NN with 2
hidden layers.

Primal and dual optimal stopping with signatures · April 2nd, 2024 · Page 28 (31)



Optimal stopping rule for fractional Brownian motion with H = 0.1
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Figure: Approximate randomized stopping rule in [B., Hager, Riedel, Schoenmakers ’23] and
selected log-signature entries for one trajectory of a fractional Brownian motion with H = 0.1.
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Bermudan options in the rough Bergomi model

K Lower-bound Upper-bound B. et al., ’20 Goudenege et al., ’20
70 1.92 (±0.006) 1.99 (±0.012) 1.88 1.88
80 3.27 (±0.008) 3.37 (±0.010) 3.22 3.25
90 5.37 (±0.011) 5.49 (±0.012) 5.30 5.34

100 8.57 (±0.013) 8.77 (±0.014) 8.50 8.53
110 13.29 (±0.015) 13.59 (±0.012) 13.23 13.28
120 20.24 (±0.013) 20.66 (±0.010) 20 20.20

Table: Put option prices for the rough Bergomi model with J = 600 time steps, H = 0.07, truncation
at level N = 3 for Longstaff–Schwartz (adding polynomials of price and v of degree up to 3) and
N = 4 for the dual upper bound, K = 12 exercise dates.
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